OCCAM: Is there a future for open-access simulation and experimentation?

Bruce Childers†, Alex Jones‡, Daniel Mossé†

†Computer Science Department ‡Electrical & Computer Engineering University of Pittsburgh, Pittsburgh, PA 15260 {childers,mosse}@cs.pitt.edu akjones@ece.pitt.edu

Computer Architecture Innovation

- \$111B processor market[†]
- Relies almost exclusively on artifacts
 - Software simulation
 - Hardware emulation
 - Benchmarks
 - And a cast of a thousand other tools...

		Simulators 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3																													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Single-core	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X		X	X	X		X	X	X	X	X	X	X	X	X
Multi-core	X	X	X	٠		X	X	X	X	X	X		٠	X	X				X	X	X	X		X	X			X	٠		-
Homogen. multi-core		X	X	٠		X	X	X	X	X	X		٠	X	X				X		X	X	X	X				X	٠		-
Heterogen. multi-core							X		•						X										•						
SMT								X		X				X	X	X			X												
Shared memory		X	X			X	X	X	X	X				X	X	X	X		X	X	X	X	X	X							
Private memory									•																						
Timing		X		X	X		X	X	X	X	X	X	X	X	X	X		X	X		X	X	X	X	•	X	X		X	X	
Cycle-accurate				X	X		X	X	X	X		X	X	X	X	X	X		X		X	X	X		•	X	X		X	X	X
Functional			X					X	X	X	X	X	X	X	X				X		X			X	X		X		X		.
Full system		X	X			X		X	X	X	X			X	X					X					X						.
Caching				X	X		X	X	X	X	X	X	X	X	X	X	X		X		X	X	X	X	X		X	X	X		X
Cache coherence							X	X	X	X	X			X	X		X		X		X		X	X	•			X			
In-order							X		X	X	X	X	X	X	X		X		X		X	X			•	X	X		X	X	X
Out-of-order							X	X	X	X		X	X	X	X	X			X				X	X	•		X		X		.
Superscalar							X	X	X	X	X	X		X	X	X			X			X	X	X			X		X		.
Virtualization																				X				•							
Virtual memory			X			X		X		X			X	X	X				X	X	X				X						.
VLIW													X												X						.
DRAM controller		X							X	X	X	X		X	X		X				X	X	X				X		X		.
Scheduling									X	X	X	X		X	X						X	X	X		•		X		X		.
Concurrency									X	X	X			X	X						X	X	X								.
DRAM error sim																									•						.
On-chip network																		X							X						.
System on chip																									X						.
Power consumption				X	X				X			X					X	X								X			X		.
Gate-level												X																	X		.
Validated										X		X		X	X		X			X									X	X	

Prolific Artifact Production

Single-core

Multi-core

Homogen. multi-core

Heterogen. multi-core

SMT

Shared memory

Private memory

Timing

Cycle-accurate

Functional

Full system

Caching

Cache coherence

In-order

Out-of-order

Superscalar

Virtualization

Virtual memory

VLIW

DRAM controller

Scheduling

Concurrency

DRAM error sim

On-chip network

System on chip

Power consumption

Gate-level

Validated

Simulators																															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	X	X	X			X	X	X	X	X	X	X	X	X	X	X	X		X	X	X		X	X	X	X	X	X	X	X	X
	X	X	X			X	X	X	X	X	X			X	X				X	X	X	X		X	X			X			
		X	X			X	X	X	X	X	X			X	X				X		X	X	X	X				X			
							X								X																
								X		X				X	X	X			X												
		X	X			X	X	X	X	X				X	X	X	X		X	X	X	X	X	X							
		X		X	X		X	X	X	X	X	X	X	X	X	X		X	X		X	X	X	X		X	X		X	X	
				X	X		X	X	X	X		X	X	X	X	X	X		X		X	X	X			X	X		X	X	X
			X					X	X	X	X	X	X	X	X				X		X			X	X		X		X		
		X	X			X		X	X	X	X			X	X					X					X						
				X	X		X	X	X	X	X	X	X	X	X	X	X		X		X	X	X	X	X		X	X	X		X
							X	X	X	X	X			X	X		X		X		X		X	X				X			
							V		V	V	V	V	V	V	V		v		V		V	V				V	V		V	V	

Just a *small* selection of 31 artifacts!

Tremendously diverse, different, overlapping...
Compounded by many experiments...

A brewing (brewed?) crisis...

- Symptomatic of fragmented, ad hoc, internal existing effort and investment
- Research expediency and results
 - Small incentive to build, release, maintain
 - Duplicating effort to re-implement for comparison
 - May not understand artifact and its use
 - Creating your own artifacts instead
- Missing (often?) accountability, repeatability

Community, open source effort

- Community <u>is asking for openness</u>
 - Activities by NSF, DOE, DARPA/DoD, CRA over last ten years to inspire, engage the community
 - More recent activities events at SC11—SC13,
 MICRO45, HiPEAC CSE13, ISCA13, and today!
- Quality artifacts are available, emerging
- Quality experiments are being done
- How can we build and leverage this?

Vision for OCCAM

- Inspired by Occam's Razor, which suggests minimum assumptions and most succinctness
- Create a shared instrument that everyone can and should use to save time, be fair, advance science: OCCAM: Open Curation for Computer Architecture Modeling
- Community-supported digital curator for simulation, emulation benchmarking and experimental results

Vision for OCCAM

- Efforts in different areas successful
 - nanoHUB (Nanotechnology)
 - arXiv (Physics and other sciences)
 - EarthCube (Geosciences)
 - C-tuning
 - Data-mill
 - Others

OCCAM pillars

Building a bridge to open access

OCCAM pillars

Building a bridge to open access

Infrastructure Pillar

Infrastructure Pilot ("v0")

Community Pillar

- Create, foster community
 - Establish procedures and policies
 - Contribute artifacts and experiments
 - Ingrain and use repository, e.g., conference submission and publication of experiments
 - Advocate and convince people of value and values behind open-access repository

Community Pilot ("v0")

- Determining governance structures
- Initial procedures and policies
 - 1 Incentive and reward
 - ② Privacy and security (privacy, data/code safety, access rights, time limits)
 - ③ Resource contribution (credit/pricing, fairness)
 - Methodology (guidelines, checks, rewards)
 - ⑤ Assessment (usage, quality of service to users)
 - 6 Ontology (classification for query & search)

Education Pillar

- "Build it and they'll come" is not a paradigm that has worked
- Rather, address barrier to adoption
 - Best practices of building artifacts, using them and running experiments
 - Scientific process (accountable, repeatable)
- Training
 - Developer's, Experimentalist's Bootcamp
 - Summer School for Simulation and Emulation
 Short (10 min), Medium (30-60 min), Long (hrs)

Pilot repository http://www.occamportal.org

News! Content!

- 1. Survey of needs
- 2. Best practices
- 4. Catalog of artifacts

http://www.occamportal.org

It Takes a Community...

Many++ have contributed... CSA workshop and other activities

Tor Aamodt **Ahmed Amer** Jason Bakos Christopher Batten Nathan Binkert **Bruce Childers** Derek Chiou Sangyeun Cho Almadena Chtchelkanova John Davis Sandhya Dwarkadas Lieven Eeckhout Kriszitian Flautner Jean-Luc Gaudiot James Hoe

Engin Ipek Alex Jones Hyesoon Kim Martha Kim Michael Kistler Jack Lange Benjamin Lee Ahmed Louri Nicolas Maillard Jason Mars Chris Mineo Daniel Mossé Steve Poole

Frank Mueller Steven Reinhardt **Arun Rodrigues**

Eric Rotenberg Sonia Sachs Ali Saidi Kevin Skadron **Evan Speight** Richard Uhling James Tringali **Noel Wheeler David Wood** Sudhakar Yalamanchili Li Zhao SC11 BoF SC12 BoF MICRO45 **HIPEAC CSE13** ISCA13

MSE

Thank you